Evolution of substrate specificity in a retained enzyme driven by gene loss
نویسندگان
چکیده
منابع مشابه
Evolution of substrate specificity in a retained enzyme driven by gene loss
The connection between gene loss and the functional adaptation of retained proteins is still poorly understood. We apply phylogenomics and metabolic modeling to detect bacterial species that are evolving by gene loss, with the finding that Actinomycetaceae genomes from human cavities are undergoing sizable reductions, including loss of L-histidine and L-tryptophan biosynthesis. We observe that ...
متن کاملEvolution of substrate specificity in a recipient's enzyme following horizontal gene transfer.
Despite the prominent role of horizontal gene transfer (HGT) in shaping bacterial metabolism, little is known about the impact of HGT on the evolution of enzyme function. Specifically, what is the influence of a recently acquired gene on the function of an existing gene? For example, certain members of the genus Corynebacterium have horizontally acquired a whole l-tryptophan biosynthetic operon...
متن کاملSubstrate specificity of the gastrin-amidating enzyme.
As is the case with many other peptide hormones of the brain and gut, gastrin requires a carboxyl-terminal amide moiety for optimal biological activity. In the structure of progastrin, the carboxyl-terminal Phe of gastrin is followed by the sequence Gly93-Arg94-Arg95, which must be processed sequentially by an endoprotease, a carboxypeptidase, and an amidating enzyme to produce amidated bioacti...
متن کاملPlant enzyme structure. Explaining substrate specificity and the evolution of function.
Progress in defining the three-dimensional (3D) structures of plant enzymes has been generally slow, but in the last 5 years momentum has picked up considerably (Fig. 1). By the beginning of 2000 about 140 individual plant protein structures were known, of which 37 related to individual plant enzymes. Most 3D structural data have been generated by x-ray crystallography. The first and very often...
متن کاملEvolution of substrate specificity in bacterial AA10 lytic polysaccharide monooxygenases
BACKGROUND Understanding the diversity of lignocellulose-degrading enzymes in nature will provide insights for the improvement of cellulolytic enzyme cocktails used in the biofuels industry. Two families of enzymes, fungal AA9 and bacterial AA10, have recently been characterized as crystalline cellulose or chitin-cleaving lytic polysaccharide monooxygenases (LPMOs). Here we analyze the sequence...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: eLife
سال: 2017
ISSN: 2050-084X
DOI: 10.7554/elife.22679